Mathematics of the Rubik's Cube

By
Melvin C. Vye

Regular Polyhedrons

[^0]$\mathrm{N}=1$

$2 \times 2 \times 2$

You can assign a position for one of the pieces to establish the orientation of the puzzle. There are 7 ! possible permutations of the remaining pieces. Each of those can be twirled in place to one of 3 orientations. There is an invariant on those twirls that means that once that of the original fixed one and 6 others are known, then that of the last is determined. Thus there are 3^{6} possibilities for the twirls on the 7 pieces we are allowing to move. $\mathrm{N}=7!\cdot 3^{6}=3674160$.

$3 \times 3 \times 3$

There are:
6 centers that don't move 8 corners with 3 orientations 12 edges with 2 orientations

Pos $=3^{8} \times 8!\times 2^{12} \times 12$!
With 7 corners twisted, the $8^{\text {th }}$ is determined so $/ 3$ With 11 edges fixed, the $12^{\text {th }}$ is determined so /2

Cannot swap an odd \# of times so /2 Pos $=\left(3^{8} \times 8!\times 2^{12} \times 12!\right) /(3 \times 2 \times 2)=43252003274489856000$

Or 43 quintillion

God's Number

Assumptions:
God exists
God has a $3 \times 3 \times 3$ Cube
There exists a number, G, such that for all 43
quintillion starting positions of the cube, the cube can always be solved in a number of moves less than or equal to G

In 2015, G was found to equal 20

Devil's Algorithm

Assumptions:
The Devil exists
The Devil has a $3 \times 3 \times 3$ cube
There exists one algorithm so powerful that for all of the 43 quintillion starting positions of the cube, repeatedly applying this algorithm will always solve the cube.

$4 \times 4 \times 4 \mathrm{~N}=7.4 \times 10^{45}$

$5 \times 5 \times 5 \mathrm{~N}=2.8 \times 10^{72}$

$19 \times 19 \times 19 \mathrm{~N}=1 \times 10^{1327}$

Yahoo! Finance Port.

Face Turns

The basic moves are Up, Down, Right, Left, Front, Back.

Each move means to turn that side clockwise, as if you were facing that side.

An apostrophe (pronounced as prime) means to turn the face in the opposite direction (counterclockwise).

The number 2 means to turn that face twice.

Note: Double moves such as U2 can be done clockwise or counterclockwise. The direction of the move can be specified by using U2 and U2' (to show finger tricks), but this is not always used.

Solution Methods CFOP

C cross - solve edge pieces on bottom layer
F first two layers - simultaneously solve the corner pieces of the bottom layer and the edge pieces on the middle layer
O orient last layer - get colors correct on last layer
P permute last layer - place all pieces correctly on last layer

Beginners Method

Cross - solve edge pieces on bottom layer
Solve corner pieces on bottom layer
Solve edge pieces on middle layer
Orient edge pieces on last layer
Permute edge pieces on last layer Orient corner pieces on last layer
Permute corner pieces on last layer

```
1. WHITE CROQS
    Z. FIRST LAYER
    L \rightarrow F ^ { - }
    B& R}->R\cup\mp@subsup{R}{}{\prime
        T}->R\cupZR
    R->RUR=
    3 SECOND LAYER
                                \therefore
    B&R->URU'R'FR'F'R
    L-U'L'ULF'}LF
    B=UTNKNFFNFR
    4 YELLOW CROSS
    LINE - CASE I FFRUR'U'F`
        V - CASEZ - FURU'R'F'
    DOT - CASE3 - CASE.1+UZ+CASEZ
    CROSS - CASE 4 - DONE
5 Y ELLOW EDGE EDGG
        CW RUZR'U'RU'R'
        GCWRUR\cupRUZR'
```



```
    6 YELLOW TOR
        TUP cOLOR ON R (RDR'D)(RDR'O')
        TOP COKR ON BFLIL (DRD'R)(DRD'R-)
7 Y ELOW CORNGR
            CW }\times\mp@subsup{R}{}{\prime}U\mp@subsup{R}{}{-}DZR\mp@subsup{U}{}{-}R\mp@subsup{R}{}{\prime}DZR
        CCW }\timesRZOZRUR'OZRU'
    SWAP ADS CORN (R'DZR)U'(R'DZR)U(R'D~R)U(R'OZR)U(R'DZR)U'}(\mp@subsup{R}{}{\prime}DQR)U
    SWAP DIA CORN (R'OLR)UZ (R'DIR)UZ (R'DZR)U(R'DIR)UZ (ROOZR)\cupZ (RODZR)U'
        A=RDZR
    SWAP ADS CONR AU'AVANAVAVAU'
    sWap dia cone avzavz av avzavzau'
```


[^0]: ©Jenty Euther 2914

